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ROSETTA: A Resource and Energy-Efficient
Inference Processor for Recurrent Neural
Networks Based on Programmable Data

Formats and Fine Activation Pruning
Jiho Kim, Student Member, IEEE, and Tae-Hwan Kim, Member, IEEE

Abstract—Recurrent neural networks (RNNs) are extensively employed to perform inference based on the temporal features of the
input data. However, their computational workload and power consumption involved in inference are prohibitively high in practice, which
may be problematic to achieve a high-speed inference in devices with tight limitations in the available silicon resources and power
supply. This paper presents an efficient inference processor for RNNs, named ROSETTA. ROSETTA supports multiple data formats
programmable for each vector operand to achieve a wide range or high precision with a limited data size. ROSETTA consistently
performs every vector operation based on homogeneous processing units with a high utilization rate. Moreover, ROSETTA skips
operations and reduces memory accesses to achieve high energy efficiency by pruning the activation elements in a fine-grained
manner. Implemented in a low-cost 28 nm field-programmable gate array, ROSETTA exhibits a resource and energy efficiency as high
as 2.51 – 1.14 MOP/s/LUT and 434.01 – 113.29 GOP/s/W, respectively, while producing near-floating-point inference results. The
resource and energy efficiency of ROSETTA are higher than those of the previous processor implemented in the same device by up to
206.1% and 304.0%, respectively. The functionality has been verified for several RNN models of various types under a fully-integrated
inference system.

Index Terms—accelerator, recurrent neural networks, inference, field programmable gate array, microarchitecture.

✦

1 INTRODUCTION

R ECURRENT neural networks (RNNs) are a class of arti-
ficial neural networks with recurrent dataflows formed

by feedback connections [1], [2]. As the recurrent dataflows
can realize stateful inference considering time dependencies
immanent in the data, RNN inference is being employed
as a key technology for applications, which primarily ne-
cessitate handling time-series data. Such applications in-
clude sequence classification [3], language modeling [4],
and handwriting recognition [5]. However, in practice, RNN
inference usually involves massive computational workload
as well as prohibitive power consumption. This hinders
efficient implementation of a fast inference process in minia-
ture devices with tight limitations in the available silicon
resources and power supply. Hence, we need a resource and
energy-efficient processor to perform RNN inference in such
devices.

Several researchers have presented efficient RNN infer-
ence processors. Guan et al. developed an inference proces-
sor for long short-term memory (LSTM) [2] using a high-
level synthesis technique, where each data element is repre-
sented in a floating-point format [6]. Han et al. developed an
efficient speech recognition engine based on an architecture-
aware pruning technique to ensure a high utilization rate [7].
Cao et al. presented an efficient pruning technique to exploit
the bank-balanced sparsity [8]. Wang et al. presented another
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pruning technique based on the block-circulant matrices and
applied a Fourier-transform-based fast circulant convolu-
tion to realize efficient computations [9]. Bank-Tavakoli et
al. presented an efficient architecture to perform the overall
flow of LSTM inference in an overlapped manner [10].
Gao et al. modified the conventional gated recurrent unit
(GRU) [11] to reduce computational workload and memory
accesses and developed an efficient inference processor tar-
geting edge-computing devices [12]. Azari et al. presented
an approximation technique to reduce the multiplication
complexity involved in RNN inference [13]. Francesco et
al. presented a systolic-array-based architecture to achieve
a scalability of an LSTM inference processor [14]. Jo et al.
presented an approximate computing method for LSTM
inference operations to realize energy-efficient speech recog-
nition [15]. Deepak et al. presented an algorithm-hardware
co-optimized memory compression technique to implement
an efficient LSTM inference processor [16].

Although each of the aforementioned processors sup-
ports only one type of RNN models targeting a specific
application, a few processors support various types of RNN
models with reconfigurability. Based on the dataflow anal-
ysis, Kim et al. derived common primitive vector opera-
tions involved in RNN inference, developed an instruction-
set processor specialized in performing them, and demon-
strated the functionality for various RNN models [17].
Fowers et al. developed a single-instruction multiple-data
(SIMD) processor to perform RNN inference in a large-
scale field-programmable gate array (FPGA) and presented
its performance for several RNN models [18]. Motivated
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TABLE 1
List of the previous inference processors supporting RNN models.

Processor (Demonstrated) Model type(s) (Demonstrated) Application(s) Implementation technology a

[6] LSTM Speech recognition FPGA
[7] (Peephole) LSTM Speech recognition FPGA
[8] (Peephole) LSTM Language modeling, speech recognition FPGA
[9] (Peephole/bidirectional) LSTM Speech recognition FPGA
[10] LSTM Sequence classification FPGA
[12] GRU Speech recognition, regression FPGA
[13] LSTM Language modeling FPGA
[14] (Peephole) LSTM Speech recognition ASIC
[15] LSTM Speech recognition ASIC
[16] LSTM Speech recognition ASIC
[17] (Bidirectional) GRU, (peephole/bidirectional) LSTM Language modeling, sequence classification FPGA
[18] LSTM, GRU, CNN Speech recognition FPGA
[19] LSTM, CNN Image classification, image captioning ASIC
[20] LSTM, CNN Image captioning, video detection FPGA
[21] (Bidirectional) GRU Machine translation FPGA

a FPGA and ASIC stand for the field-programmable gate array and application-specific integrated circuit, respectively.

by the fact that RNN models involve the fully-connected
layers usually employed to implement the classification in
convolutional neural networks (CNN), Shin et al. developed
an efficient CNN-RNN processor based on the hardware-
sharing technique [19]. Zeng et al. presented a reconfig-
urable system to perform CNN-RNN inference for general-
purpose applications [20]. Li et al. implemented neural ma-
chine translation based on bi-directional GRU with attention
mechanism using a high-level synthesis technique [21]. Ta-
ble 1 lists the previous processors mentioned in this section
in summary.

This paper presents an efficient RNN inference processor
based on programmable data formats and fine activation
pruning, named ROSETTA. The contributions of this paper
are listed as follows:

• An efficient instruction-set architecture specialized in
performing RNN inference has been proposed. The
proposed instruction-set architecture supports multiple
data formats to realize a wide range or high precision
in spite of the small data size.

• A resource-efficient microarchitecture has been pro-
posed. The proposed microarchitecture has been de-
signed to perform every vector operation consistently
based on homogeneous processing units (PUs) with a
high utilization rate.

• An activation pruning scheme has been proposed,
based on which the pruning information can be ex-
ploited to skip operations and reduce memory accesses
with the aim of achieving a high energy efficiency.

• An RNN inference processor, ROSETTA, has been
implemented based on the ideas above in a low-
cost 28 nm FPGA. Its functionality has been veri-
fied exhaustively for several practical models under a
fully-integrated system. The resource and energy effi-
ciency of ROSETTA are 2.51 – 1.14 MOP/s/LUT and
434.01 – 113.29 GOP/s/W, respectively.

The rest of the paper is organized as follows. Section 2
explains the background and motivation of this work. Sec-

tion 3 presents the architecture of ROSETTA in detail. Sec-
tion 4 shows the implementation results and evaluates them.
Section 5 discusses the novelty of ROSETTA as compared
with the previous related work. Finally, Section 6 draws the
conclusion.

2 BACKGROUND AND MOTIVATION

RNN inference is performed through multiple timesteps,
where the dataflow for each timestep has feedback con-
nections through which the activations for the current
timestep may affect those in the next timestep. Such recur-
rent dataflow imposes the states on the models, enabling
inference to be performed finding the temporal features of
the input. There are various types of RNN models [1], [11],
[22], [23], [24]; the dataflows of two popular models are
illustrated in Fig. 1. In the figure, the edges represent the
activation or parameter vectors. The vectors produced from
the gates, such as the states, and those generated inside the
gates are called activation vectors [7].

The dataflows vary depending on the model types; how-
ever, they can be built of the three kinds of the primitive
vector operations [17], namely, the elementwise multiply-
accumulate (EMAC), elementwise non-linear activation
function (ENOF), and matrix-vector multiply-accumulate
(MVMA) operations. In addition, there are data dependen-
cies between some of the vector operations; for example, in
the forget gate of LSTM, the ENOF operation is performed
for the results from the MVMA operation. Suppose the
processor is designed by incorporating multiple different
PUs for the vector operations. In that case, some of them
may not work due to the data dependencies inherent in
the dataflows, leading to a low resource efficiency. Such ar-
chitectural consideration by the dataflow analysis provides
ROSETTA with the motivation to be designed based on
homogeneous PUs.

The data distributions in the dataflows of practical mod-
els have interesting characteristics. Fig. 1 illustrates the
distributions of the data of some activation and parameter
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Fig. 1. Inference dataflows of RNN models. The data distributions have been obtained for the practical models to perform word-level Penn Treebank
task [25] in 64 timesteps, where the sizes of the input and states are 128 and 64, respectively. The operators · and × represent the elementwise and
general multiplications, respectively. σ and τ represent the elementwise sigmoid and hyperbolic tangent activation functions, respectively. W and
b denote the weight and bias, respectively, with the subscripts to distinguish the parameters with respect to the gates (f : forget gate, i: input gate,
c: cell gate, o: output gate, z: update gate, r: reset gate, cx: cell gate for the input, ch: cell gate for the state). The dimensions of Wcx and Wch are
β × α and β × β, respectively, while those of the others are β × (α+ β), where α and β denote the sizes of the input and state(s), respectively.

vectors, which have been collected by performing the prac-
tical inference task [25]. First, it can be seen that the data
distribution varies considerably depending on the vector.
For example, the data of the input activation vectors of
the ENOF operations are distributed in a wider range than
those of the output vectors from the operations. Hence, the
data format for the former ones (e.g., 1 and 4 in Fig. 1)
needs to be capable of representing the data in a wider
range, whereas that for the latter ones (e.g., 2 and 5 in
Fig. 1) needs to be capable of representing the data with
a high precision. In addition, the parameter data may have
different distributions for the model types (e.g., 3 and 6 in
Fig. 1). Therefore, it would be inefficient to represent every
data using a single format. Second, most of the activation
data have small magnitudes. If the activation data with
small magnitudes do not significantly affect the inference
results, they can be effectively pruned to be excluded in
subsequent operations. Such observations regarding the
data distributions provide ROSETTA with the motivation
to support multiple data formats and activation pruning.

3 PROPOSED PROCESSOR: ROSETTA
3.1 Instruction-Set Architecture Supporting Multiple
Data Formats

ROSETTA is an instruction-set processor, for which the
instruction set has been devised to efficiently perform vector
operations by extending our preliminary work [26]. Table 2
lists the supported instructions, describing their behaviors.
Each instruction corresponds to one of the primitive vector
operations involved in the dataflows of RNN models, where
the result as well as operands can be considered vectors.
Three memories are accommodated for vector storages; they
are named after the data stored: activation memory (AM),

weight memory (WM), and bias memory (BM). As described
in Table 2, the vectors are fetched from and written to
the memories directly while executing the instructions, for
which the addresses are calculated effectively from the bases
given by the related fields (the green-striped fields shown
in Table 2). The dimensions of the vectors are determined
according to the sizes of the input and state(s) of an RNN
model, given by the configurable parameters α and β,
respectively. Each instruction has delay slots that can be
filled with bubbles if the S field is set. The instruction whose
E field is set finalizes the dataflow. ROSETTA executes the
vector operations one after another according to the se-
quence of the instructions stored in the instruction memory
(IM). The sequence of the instructions is programmed before
performing inference by scheduling the vector operations
composing an inference dataflow with the consideration of
the data dependencies between them.

ROSETTA supports multiple data formats. The sup-
ported data formats are S1.7, S3.5, and U0.8, where Sm,n
and Um,n stand for the 2’s complement and unsigned
fixed-point numbers, respectively, consisting of an m-bit
integer and n-bit fraction parts. The size of the integer
part differs depending on the data format; however, the
data size is made fixed regardless of the format for hard-
ware regularity. The programmability of the data formats
is provided per vector operand by the related fields in the
instructions (the red-hatched fields shown in Table 2). The
data formats need to be selected carefully considering the
data distributions in practice (e.g., the data distributions
obtained for the training dataset) to realize a wide range
or high precision, which might be attained costly by a single
data format (e.g., floating-point format).

ROSETTA successfully produces near-floating-point in-
ference results for several practical tasks based on various
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TABLE 2
Supported instructions in ROSETTA.

Instruction Format Behavior

EMAC
Reserved

Reserved

0SET Fr Fx FY

123579111621 8 6 41722262731 10

1SETIC0 Fr Fx Fy

1SET01A1 Fr 0 00 1 0 00 1

1246810 9 7 5 312 11

12791116 10 813 1222262731

21 1722262731

BASEr BASEx BASEz BASEY

BASEr BASEx BASEy

BASEr BASEx

Performs the EMAC operation shown in Fig. 1: r = x · y + z, where x is bitwise-inverted
before the multiplication if I is set. The two vectors, x and y, whose dimensions are β, are
read from AM at the addresses given by BASEx and BASEy , respectively. The data formats
of the elements of the two vectors are indicated by Fx and Fy , respectively. The resulting
vector, r, is accumulated to the vector in AM at the address given by BASEr if C is set;
otherwise, it is written there. The data format of each element of the resulting vector is
adapted to Fr, considering Fx and Fy . T can be used to prune the elements in the resulting
vector.

ENOF

Reserved

Reserved

0SET Fr Fx FY

123579111621 8 6 41722262731 10

1SETIC0 Fr Fx Fy

1SET01A1 Fr 0 00 1 0 00 1

1246810 9 7 5 312 11

12791116 10 813 1222262731

21 1722262731

BASEr BASEx BASEz BASEY

BASEr BASEx BASEy

BASEr BASEx

Performs the ENOF operation shown in Fig. 1: r = Θ(x), where Θ is the elementwise
activation function of which type is the sigmoid if A is set; otherwise the hyperbolic
tangent. The activation vector, x, whose dimension is β, is read from AM at the address
given by BASEx. The resulting vector, r, is written to AM at the address given by BASEr.
The data format of each element of the resulting vector is adapted to Fr. T can be used to
prune the elements in the resulting vector.

MVMA

Reserved

Reserved

0SET Fr Fx FY

123579111621 8 6 41722262731 10

1SETIC0 Fr Fx Fy

1SET01A1 Fr 0 00 1 0 00 1

1246810 9 7 5 312 11

12791116 10 813 1222262731

21 1722262731

BASEr BASEx BASEz BASEY

BASEr BASEx BASEy

BASEr BASEx

Performs the MVMA operation shown in Fig. 1: r = Y × x + z. The weight matrix, Y,
whose dimension is β × (α + β), is read from WM at the address given by BASEY . The
activation vector, x, whose dimension is α + β, is read from AM at the address given by
BASEx. The bias vector, z, whose dimension is β, is read from BM at the address given
by BASEz. The data formats of the elements of the weight matrix and activation vector
are indicated by FY and Fx, respectively. The resulting vector, r, whose dimension is β,
is written to AM at the address given by BASEr. The data format of each element of the
resulting vector is adapted to Fr, considering FY and Fx. T can be used to prune the
elements in the resulting vector.

RNN models by supporting the data formats stated above,
as will be shown in Section 4.2. Furthermore, its data size is
much smaller than those of the previous studies based on a
single data format [8], [9], [17], [30]. It might be beneficial to
support more or larger data formats to reduce the difference
of the inference results from those of the floating-point data;
however, this would increase not only the circuit complexity
involved in the datapath but also the memories for the data
storages. This is not suitable to achieve a low resource usage
and low power.

3.2 Resource-Efficient Microarchitecture

ROSETTA has been designed based on a SIMD processing
pipeline. Fig. 2 shows the overall architecture.† Each in-
struction is fetched from IM and issued into the pipeline to
perform the corresponding vector operation. The pipeline
has been designed to perform scalar operations in parallel
for 64 lanes of the vectors per cycle. A vector operation
may thus be decomposed into the suboperations with the
operands of 64 lanes and performed through the pipeline.
The pruned activation memory (PAM) is a small memory
with the address space equivalent to the address space of
AM and it stores the pruning information represented by a
single bit for each element of the activation vectors. PAM is
first queried to find whether each element of the activation
vector operands had been pruned, and then the operands
except the pruned ones are read from the other memories.
The leading-zero counting unit (LZCU) is used to locate the
non-pruned elements. The activation coefficient unit (ACU)
finds the coefficients used to evaluate the activation func-
tions as in our previous work [17]. Vector processing unit
(VPU) computes out the resulting activation vector, possibly
pruning its elements. Finally, the resulting activation vector

†The design of ROSETTA is available at http://abit.ly/rosetta.

and its pruning information are written to AM and PAM,
respectively.

VPU has been designed with the focus on performing the
EMAC operations efficiently. Fig. 3 shows the architecture
of VPU. VPU is the array of homogeneous PUs, where each
PU performs the operations of multiply-accumulate (MAC),
format adaption, and pruning for a vector lane. Each PU
is pipelined in two stages. The first stage multiplies the
operands and pre-aligns the (additive) operand by shifting
it to be accumulated in the next stage. The second stage
accumulates the product into the register, where the accu-
mulated result is represented in S8.24 without regard to the
data formats of the operands. The format adaptation unit
(FAU) adapts the accumulated result to the resulting data
format by shifting and saturating it. The shifting part adapts
the radix point of the accumulated result to the resulting
data format. The saturating part saturates the result to the
maximum or minimum value that can be represented by
the resulting data format on detecting overflow or under-
flow conditions, respectively. The shift amounts in the pre-
alignment and format adaptation are determined by con-
sidering the data formats given by the related fields in the
instructions and shared by the PUs. The pruning unit (PRU)
calculates the pruning information of the result, which will
be delineated in Section 3.3.

ROSETTA performs vector operations consistently on
the basis of the EMAC operations. As illustrated in Fig. 4,
the ENOF operation is performed by the EMAC operation
based on the linear splines with the slopes and offsets
obtained by ACU [17]; the MVMA operation is performed
by decomposing it into several EMAC operations for the
column vectors of the weight matrix. This explains why
VPU has been designed to be specialized in performing the
EMAC operations by the array of the homogeneous PUs.
The previous processors incorporate several heterogeneous
PUs for vector processing, each of which is dedicated to
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Fig. 3. Microarchitecture of VPU, where 0b is the prefix to stand for a binary number.

a particular operation [7], [8], [12], [13], [27]. This is not
efficient in utilizing the hardware resource because some of
the PUs sometimes may not be utilized inevitably because of
the data dependency in the dataflow through the timesteps.
ROSETTA performs every vector operation by fully utiliz-
ing the PUs, thereby achieving high resource efficiency. It
should be remarked that the homogeneity of the PUs has
become feasible as the data are represented in the fixed size
irrespective of what they represent.

Additional description of the other miscellaneous com-
ponents are followed:

• LZCU has been designed based on the divide-and-
conquer technique presented in [28]. Let the leading-
zero count of anN -bit vector x denoted by a (1+log n)-
bit vector l. x is partitioned into two disjoint sub-
vectors of N/2 bits, xHI and xLO, where x = {xHI, xLO}
and {·} concatenates the vectors. Given the leading-
zero counts of xHI and xLO, which lHI and lLO denote,
respectively, l can be obtained recursively as expressed
in (1). The recursion is initialized with the base: l = 1
for x = 0b1 and l = 0 for x = 0b0. Fig. 5 shows

the microarchitecture of the n-bit LZCU. The leading-
zero count of x is calculated with those of the two
disjoint parts of x, which are calculated by the two sub
LZCUs, based on the recursion expressed in (1). LZCU
in ROSETTA has been implemented by instantiating the
architecture shown in Fig. 5 with n = 64.

• ACU is the array of subunits, where each subunit finds
the coefficients of the linear spline to evaluate the non-
linear activation function for a vector lane. The microar-
chitecture of ACU is shown in Fig. 6. In a subunit of
ACU, let the slope and offset of the spline to evaluate
the sigmoid function of x denoted by ψσ(x) and ϕσ(x),
respectively; and those to evaluate the hyperbolic tan-
gent function of x by ψτ (x) and ϕτ (x), respectively.
ACU looks up the sigmoid tables to find ψσ(x) and
ϕσ(x) with the most significant bits of x. ACU has
been designed by incorporating only sigmoid tables,
which are also utilized to find the spline coefficients to
evaluate the hyperbolic tangent function. This design
is based on the technique we proposed in [17]; to be
specific, ψτ (x) and ϕτ (x) can be obtained by 2ψσ(2x)
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Fig. 4. Mechanisms to perform the vector operations in ROSETTA with the activation vector operand(s) whose pruning information is as shown.

and 2ψσ(2x) − 1, respectively, since the hyperbolic
function of x, τ(x) can be calculated by 2σ(2x)− 1.

3.3 Fine Activation Pruning
ROSETTA may prune the activation elements while per-
forming inference to achieve high energy efficiency. The
pruning is performed for the activation vectors with thresh-
olds differently programmable for each vector rather than
with one threshold consistently used, so called the fine
activation pruning. This section describes how the pruning
is performed and details how the pruning information is
exploited to skip operations and reduce memory accesses
in executing each instruction, showing how a high energy
efficiency can be attained.

Each element of the activation vectors is pruned if its
magnitude is small. PRU decides if an element of the result-
ing activation vector will be pruned. More specifically, the
element, whose value is r, will be pruned if it satisfies the
condition:

r = 0 for T = 0,
−ϵ2T ≤ r < ϵ2T for T ̸= 0,

(2)

where ϵ denotes the unit in the least position for the result-
ing data format and T , which is given by the related field
in the instruction (the T fields shown in Table 2), can be 0,
1, 2, or 3. In the pruning condition, T is the parameter to
control the pruning amount. When programmed so that T
is 0, the pruning amount is least; only zero elements of the
activation vectors will be pruned and the inference results

are not affected at all. As shown in Fig. 3, PRU has been
designed to make such pruning decision independently of
the size of the integer part of the data format. Instead of
the general comparisons, PRU detects the leading zeros and
ones to check the pruning condition by considering whether
the data format is signed or not. If an element is determined
to be pruned, its value will not be written to AM, nor read
from AM subsequently.

In executing each instruction, ROSETTA first reads the
pruning information of the operands and exploits it to skip
operations and reduce memory accesses, as follows:

• EMAC: For each lane, if at least one element of the mul-
tiplicative operands (in x and y) had been pruned, not
only the pruned element but also the others are not read
from AM even if they had not been pruned, and the
result (in r) is not written to AM, either. The rationale
can be explained as follows: since the pruned element
of the multiplicative operands has a small magnitude
in fact, the product would have a small magnitude, too,
affecting the result insignificantly. Fig. 4 illustrates an
EMAC operation, where the elements in the first two
lanes and the last lane of the vectors (x,y, z, and r)
are not read from or written to AM as there are at
least one element of the multiplicative operands (in x
and y) had been pruned for each of the lanes. AM has
been designed based on the multiple banks as shown
in Fig. 2, where each bank stores the elements for a
certain lane of the vectors, and its access control is made
independently of those for other banks. The read and

0b10 · · · 0 for lHI [log n− 1] = 0b1 and lLO [log n− 1] = 0b1,
{0b01, lHI[log n− 2 : 0]} for lHI [log n− 1] = 0b1 and lLO [log n− 1] = 0b0,
{0b00, lLO[log n− 2 : 0]} for lHI [log n− 1] = 0b0,

(1)
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Fig. 5. Microarchitecture of the n-bit LZCU.
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Fig. 6. Microarchitecture of ACU, which has been adapted from that
presented in [17] considering the data format.

write enable signals for each bank combine the pruning
information (those read from PAM for the read enable
signals and that calculated from VPU for the write
enable signal) and other control signals as highlighted
in Fig. 2.

• ENOF: For each lane, the result (in r) is determined
without reading the operand (in x) if the element had
been pruned. The results of the hyperbolic tangent and
sigmoid activation functions for the pruned element are
immediately approximated to 0 and 0.5, respectively.
The rationale can be explained as follows: the results
of the hyperbolic tangent (≜ (e2x − 1)/(e2x + 1)) and
sigmoid activation functions (≜ 1/(1 + e−x)) are 0
and 0.5 for x = 0. If an element has been pruned,
its magnitude can be considered small, for which the
activation function results can be approximated so as if
it were a zero. Fig. 4 illustrates ENOF operations, where
the operands in the first lane and the last lane had been
pruned and the results are determined without reading
the operands from AM.

• MVMA: If some elements of the activation vector
operand (x) had been pruned, the accumulations of
the vectors scaled by the pruned elements are skipped.
The rationale is that the vectors scaled by the pruned
elements would not contribute significantly to the ac-
cumulation result because the pruned elements have
small magnitudes in fact. Fig. 4 illustrates an MVMA
operation with the three non-pruned activation ele-
ments (in x), a1, a2, and a3, where the vector op-
erations with the other pruned elements are skipped
effectively. To skip the operations with the pruned
elements, ROSETTA seeks the non-pruned elements by

LZCU, which counts the leading zeros of the pruning
information as shown in Fig. 2.

ROSETTA has been designed based on the SIMD
pipeline, through which 64 scalar operations are performed
in parallel in order of querying the pruned information,
fetching data, computing, and writing the results, as de-
scribed in Section 3.2. For simplicity and regularity, the
pipeline control regarding data processing is fulfilled not
independently for each SIMD lane but commonly for all the
SIMD lanes, except for those related to the AM accesses. This
is also because ROSETTA does not assume any structured
patterns of the pruning information. Therefore, no opera-
tions are skipped in executing EMAC and ENOF instruc-
tions, though the AM accesses can be reduced by exploiting
the pruning information. In executing MVMA instructions,
they are performed by being decomposed into several
(sub) vector operations scaled by the activation elements,
as illustrated in Fig. 4. If there are any pruned activation
elements, the entire scalar operations of the corresponding
(sub) vector operations are skipped. The related memory
accesses of WM and AM are thus eliminated effectively.

Exploiting the pruning information as described above
may improve energy efficiency. The energy efficiency is
defined by the inference speed attributed to the unit power
consumption. Skipping operations increases the inference
speed, and reducing memory accesses lowers the dynamic
power consumption. The energy efficiency can be thus
improved by the pruning as the additional hardware to
perform the pruning has marginal effects on the energy
efficiency. This may however affect the inference results if
non-zero elements are pruned for T ̸= 0. Section 4.2 will
investigate the energy efficiency and inference performance
of ROSETTA thoroughly for several practical tasks with
various pruning configurations in order to demonstrate the
validity of this technique.

The major additional components required to implement
the activation pruning are the PRUs and PAM. Each PRU
has been designed based on the low-complexity microarchi-
tecture, which performs the pruning decision by detecting
leading-bit patterns as described earlier in this subsection,
and PAM has been designed based on the registers as will be
described in Section 3.4, which are more efficient in terms of
the power consumption than BRAMs. As a result, although
the activation pruning brings about considerable amounts
in the operation skipping and memory access reduction, its
hardware overhead is not substantial: the overall logic re-
source usage and power consumption have been increased
by 5.4% and 7.9%, respectively, to implement the activation
pruning.

3.4 Prototype Inference System

A prototype RNN inference system has been developed
in an FPGA to verify the functionality of ROSETTA by
integrating all the essential components required to perform
practical tasks. Fig. 7. shows the overall architecture of
the inference system. The inference core has been imple-
mented based on the architecture shown in Fig. 2. AM,
WM, BM, and IM have been implemented based on the
block random-access memories (BRAMs), whereas PAM
has been implemented based on the registers. AM has a
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multi-bank structure in which the access of each bank can
be controlled individually. The access router dynamically
forwards the data requests to the internal BRAM instances
of AM, realizing such a high bandwidth that is required
for ROSETTA to work without pipeline stalls. The control
and status registers (CSRs) include the registers storing the
model dimensions, determined by α and β. AM, WM, BM,
IM, PAM, and CSRs are mapped to the address space of the
microcontroller unit (MCU).

MCU fulfills the overall flow by controlling the compo-
nents of the system as follows. The parameter and instruc-
tion data, which are initially stored in the external SDRAM,
are loaded into WM, BM, and IM, respectively, for their
types; ROSETTA does not directly access the data stored in
the external SDRAM while performing inference. For each
timestep of the inference tasks, the input is loaded into AM;
ROSETTA executes the instructions with the input and state
stored in AM, where the state was calculated in the previous
timestep. MCU reads the inference results from ROSETTA
and transmits the results to the host PC through the JTAG
UART at the baud rate of 115200 without parity bits. The
communication with the PC occurs only after the inference

ROSETTA

64·4 

S

CSRs 

S
Inference core

64·8·4 

α, β

Control
Status

SDRAM Host PC

FPGA

External

MCU
SDRAM 

controller 
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M S S S
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Single-Port 
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...... ...
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64·8 
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64 

Fig. 7. Overall architecture of the prototype inference system, where S
and M stand for a slave and master interface, respectively.

FPGA-Based 

Inference System

Host PC

Typing a seed word for the inference

Inferring the word sequence 

with the seed word

…..

FPGA-Based 

Inference System

Host PC

Typing a seed word for the inference

Inferring the word sequence 

with the seed word

…..

Fig. 8. Verification environment setup.

flow and is not part of the inference flow.

4 RESULTS AND EVALUATION

4.1 Implementation Results

The entire RNN inference system with ROSETTA integrated
has been implemented by synthesizing it to fit in a low-cost
FPGA with tight limitations in the available resources. The
synthesis has been conducted using Intel® Quartus® Prime
v20.1, targeting Intel® Cyclone®V FPGA, whose part num-
ber is 5CSXFC6D6. The entire system has been successfully
fitted in the device using the resources of 11.5K adaptive
logic modules (ALMs), 10.1K-bit registers, 64 digital signal
processing blocks (DSPs), and 1814K-bit BRAMs. The re-
source usage of ROSETTA itself is 8.6K ALMs, 5.3K-bit reg-
isters, 64 DSPs, and 800K-bit BRAMs, where the DSPs have
been used to implement the multipliers and accumulators
in the PUs, and BRAMs have been used to implement AM,
BM, WM, and IM. At the maximum operating frequency,
estimated to 124MHz under the slow condition at 85◦C with
a 1.1 V supply, the theoretical inference speed is 15.9 GOP/s.
The theoretical speed has been derived by multiplying the
operating frequency by the count of the operations, which
the microarchitecture is capable of processing per cycle,
counting each of the multiplication and addition operations
by 1 OP. It is worth noting that the practical speed may
effectively be significantly higher than the theoretical speed
by the activation pruning, as will be investigated below.

The functionality of ROSETTA has been verified for
practical inference tasks with various RNN models. Tables 3
and 4 list the RNN models used to conduct the functional
verification for the two tasks: the word-level Penn Treebank
(PTB) task [25] in 64 timesteps and the sequential MNIST
task [33] in 16 timesteps. The bi-directional LSTM in Table 4
is composed of multiple layers for the recurrent dataflows
in both of the forward and backward directions. Fig. 8
shows the setup of the verification environment, wherein
ROSETTA is successfully inferring the word sequence.
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TABLE 3
Performance of the word-level Penn Tree Bank task in 64 timesteps.

Model a Data format & pruning configurations b Op. skip.
(%)

Eff. infer.
speed (GOP/s)

Mem. acc.
reduc. (%)

Pow. cons.
(mW)

Energy eff.
(GOP/s/W)
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(α = 64, β = 128,
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a α and β denote the sizes of the input and state(s), respectively.
b The blue solid, red dashed, and green dotted lines stand for the data formats of S1.7, S3.5, and U0.8, respectively. The circle, triangle, rectangle,

and star symbols attached after the vector operations stand for the pruning with T = 0, 1, 2, and, 3, respectively. σ and τ are the sigmoid and
hyperbolic tangent functions, respectively.

c The number inside the parentheses is the absolute difference from the single-precision floating-point result, obtained based on each model
without any pruning.

4.2 Performance Analysis
The performance of ROSETTA has been analyzed elabo-
rately for the practical inference tasks. The practical counts
with respect to the operating cycles and memory accesses
have been obtained along with the inference performance by
performing inference for the entire test data sets under the
cycle-accurate simulator. The rates of the operation skipping
and memory access reduction have been estimated by the
ratios of the practical counts to the referential workload
and referential memory access count, respectively. The ef-
fective inference speed, defined by how many operations
can be processed effectively per second, has been obtained
by dividing the referential workload by the inference time
calculated by multiplying the practical cycle count and pe-
riod. Here, the referential workload and referential memory
access count can be calculated directly depending on the

model type and size (specified by α and β). The power
consumption results with underlines have been estimated
for the post-fit design by using Intel® Quartus® Prime
Power Analyzer with the switching activity information;
while other results without underlines have been obtained
by scaling the dynamic power consumed by the memories
according to the memory access reduction rates. The de-
tailed analysis of the power consumption will be discussed
later in this subsection.

As shown in the tables, the inference performance
(i.e., the perplexity for the Penn Treebank (PTB) task and
the accuracy for the sequential MNIST task) achieved by
ROSETTA does not make a significant difference from that
achieved based on the single-precision floating-point data,
owing to the programmable data format, in spite of the size
of each data element being as small as 8 bits. The first three
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TABLE 4
Performance of the sequential MNIST task in 16 timesteps.

Model a Data format & pruning configurations b Op. skip.
(%)

Eff. infer.
speed (GOP/s)
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ENOF (σ)

ENOF (σ)

ENOF (τ)

Wch

Wr

Wz

Wcx

Input

Hidden stateConcatenation

1-

EMAC

0

MVMA

MVMA

MVMA EMAC

MVMA EMAC

EMAC

ENOF (σ)

ENOF (σ)

ENOF (τ)

Wch

Wr

Wz

Wcx

bch

br

bz

bcx

bch

br

bz

bcx

bch

br

bz

bcx

54.30 34.9 54.69 80.41 434.01 97.12 (1.75)

Bidirectional LSTM [24]
(α = 64, β = 64,

133.38 KOP/timestep)

0
Backward layer hidden state

0

Backward layer cell state

Concatenation

MVMAEMAC

MVMA

MVMAEMAC

MVMAEMAC ENOF (σ)

ENOF (σ)

ENOF (τ)

ENOF (σ)

ENOF (τ)

Wc

Wi

Wf

Wo

bc

bi

bf

bo

0
Forward layer hidden state

0

Forward layer cell state

Concatenation

MVMA EMAC

MVMA

MVMA EMAC

MVMA EMACENOF (σ)

ENOF (σ)

ENOF (τ)

ENOF (σ)

ENOF (τ)

Wc

Wi

Wf

Wo

bc

bi

bf

bo

Concatenation Hidden state

Input

Input

Hidden stateConcatenation

1-

EMAC

0

MVMA

MVMA

MVMA EMAC

MVMA EMAC

EMAC

ENOF (σ)

ENOF (σ)

ENOF (τ)

Wch

Wr

Wz

Wcx

Input

Hidden stateConcatenation

1-

EMAC

0

MVMA

MVMA

MVMA EMAC

MVMA EMAC

EMAC

ENOF (σ)

ENOF (σ)

ENOF (τ)

Wch

Wr

Wz

Wcx

Input

Hidden stateConcatenation

1-

EMAC

0

MVMA

MVMA

MVMA EMAC

MVMA EMAC

EMAC

ENOF (σ)

ENOF (σ)

ENOF (τ)

Wch

Wr

Wz

Wcx

bch

br

bz

bcx

bch

br

bz

bcx

bch

br

bz

bcx

52.56 33.06 41.70 85.52 386.55 97.81 (0.89)

a α and β denote the sizes of the input and state(s), respectively.
b The blue solid, red dashed, and green dotted lines stand for the data formats of S1.7, S3.5, and U0.8, respectively. The circle, triangle, rectangle,

and star symbols attached after the vector operations stand for the pruning with T = 0, 1, 2, and, 3, respectively. σ and τ are the sigmoid and
hyperbolic tangent functions, respectively.

c The number inside the parentheses is the absolute difference from the single-precision floating-point result, obtained based on each model
without any pruning.

rows after the header in each table show different results for
different pruning configurations, even based on the same
models. If the pruning parameters (i.e. T ’s for the vector
operations) are configured so as to prune more activation
elements (e.g., as in the third row after the header), more
operations and memory accesses are skipped and reduced,
respectively. This results in a superior energy efficiency
with an inferior inference performance; contrastingly, the

inferior energy efficiency with a superior inference perfor-
mance is achieved by configuring the parameters for less
pruning (e.g., as in the first row after the header). More
importantly, ROSETTA provides the programmability to
control the pruning amount in a fine-grained manner, by
which we can make compromise on energy efficiency with
inference performance, taking certain application-specific
constraints into account. Moreover, such programmability
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TABLE 5
Implementation results of the FPGA-based RNN inference processors.

Processor ROSETTA [9] a [29] [30] [12] [17] [31]

FPGA device
(part number)

Cyclone®V
(5CSXFC6D6)

Virtex®7
(XC7VX690T)

Zynq®7000
(XC7Z020)

Zynq®7000
(XC7Z045)

Zynq®7000
(XC7Z007S)

Cyclone®V
(5CSXFC6D6)

Zynq®7000
(XC7Z007S)

RNN model
Reconfigurable
(programmable

dataflow)

LSTM
(fixed dataflow)

LSTM
(fixed dataflow)

LSTM
(fixed dataflow)

Modified GRU
(fixed dataflow)

Reconfigurable
(programmable

dataflow)

LSTM
(fixed dataflow)

Training
methodology

Not required Required Not Required Not Required Required Not required Required

Data format
Programmable

8-bit
16-bit 16-bit 16-bit

16-bit activations
8-bit weights

16-bit
16-bit activations

8-bit weights

Res.
usage

ALM (K) 8.6 N.A. N.A. N.A. N.A. 11.0 N.A.
LUT (K) 13.9 b 504.4 51.6 166.0 4.4 18.0 b 11.3
FF (K) 5.3 199.7 69.2 150.0 2.7 10.1 12.0

BRAM (Kb) 800 34768 6451 18630 288 1620 1368
DSP 64 2675 180 900 9 64 5

On-chip param.
(kilo param.) c ≤ 98.8 ≤ 2173.0 ≤ 403.2 ≤ 1164.4 ≤ 36.0 ≤ 98.8 ≤ 171.0

Power cons. (W) d 0.71 – 0.68 e

(0.14 – 0.08)
22.00

(N.A.)
2.29

(N.A.)
10.60

(N.A.)
2.29

(0.07)
0.75

(0.14)
2.30

(0.07)
Infer. speed

(GOP/s)
34.90 – 15.90 e 349.60 – 43.70 4.25 221.00 20.20 – 2.00 14.83 77.30 – 1.00

Res. efficiency
(MOP/s/LUT)

2.51 – 1.14 e 0.69 – 0.09 0.08 1.33 4.55 – 0.45 0.82 6.84 – 0.09

Energy efficiency
(GOP/s/W) d

51.77 – 22.55 e

(434.01 – 113.29)
15.89 – 1.99

(N.A.)
1.86

(N.A.)
20.84

(N.A.)
8.82 – 0.87

(306.06 – 30.30)
19.77

(107.43)
33.61 – 0.43

(1120.29 – 14.49)

a This corresponds to C-LSTM FFT8 in [9].
b This result has been estimated to be the combinational ALUT count, as suggested in the official guideline [32].
c This metric has been estimated to be the number of the parameters that can be fetched by the processor without involving external memory

accesses. The metrics for the processors in [9], [12], [29], [30], [31] have been estimated to be very optimistic by considering the total BRAM
usages and data formats since their papers do not show the concrete information of the BRAM usages dedicated to implement the parameter
storages.

d The results inside the parentheses correspond to the power consumption or energy efficiency of the processor itself, while the results outside
the parentheses correspond to those of the entire system.

e The highest result (the lowest result for power consumption) has been obtained for the model with the configuration shown in the third row in
Table 4, at which the classification accuracy of 97.12 % is achieved for the sequential MNIST task [33]. The lowest result (the highest result for
power consumption) has been obtained under the hypothetical worst-case condition where no pruning occurred.

is viable independently for the inference process for each
timestep; enabling the pruning amount to be controlled
through timesteps dynamically (e.g., controlling the pruning
amount based on the results from the preceding timesteps).
Such dynamic control based on the fine activation pruning
might be studied in further work for the practical inference
tasks.

The power consumption is detailed in Fig. 9. It is the
breakdown of the power consumption of ROSETTA to per-
form the sequential MNIST task based on the GRU model
with the configurations in the first row after the header in
Table 4. As revealed in the figure, the dynamic power con-
sumption of the memories is most dominant in the overall
power consumption. The dynamic power consumption of
the memories is linearly proportional to the memory access
count, which can be reduced effectively by the activation
pruning.

4.3 Evaluation

ROSETTA is compared with the previous state-of-the-art
RNN inference processors in terms of implementation re-

Dynamic 

power cons.

(memory)

57.3%

Dynamic

power cons.

(compute logic)

28.3%

Static 

power cons.

14.4%

AM 

59.6%

AM 

59.6%

WM 

26.8%

WM 

26.8%

IM

0.5%

BM

7.9%

PAM

5.2%

Fig. 9. Power consumption breakdown of ROSETTA for the model with
the configurations, which are described in the first row after the header
in Table 4.

sults, which are summarized in Table 5. For fair comparison,
the RNN inference processors implemented in the FPGA
devices of the same technology (28 nm) node have been
selected carefully. ROSETTA supports various types of RNN
models by providing dataflow reconfigurability with the
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instructions corresponding to the primitive vector opera-
tions, whereas most of the previous processors [9], [12],
[29], [30], [31] support limited types of RNN models with
fixed dataflows. The data size of ROSETTA is much smaller
than those of the previous processors. This makes ROSETTA
capable of supporting a relatively larger model even with a
smaller BRAM resource usage in case the model parame-
ters are stored in the BRAM-based memories. Implemented
based on the same platform, ROSETTA can be directly
compared with our previous work [17]: the BRAM usage of
ROSETTA has been reduced to about 49.4% by the reduced
data size; the inference speed has been effectively increased
by up to about 135.3% owing to the activation pruning.
Despite such improvements, the logic resource usage is no
higher than the previous result due to the efficient circuitry
to process the data of the reduced size; the inference results
are still maintained to be near-floating-point results.

The resource and energy efficiency of the RNN inference
processors are compared in Table 5. The efficiency range
has been obtained based on the range of the achievable
inference speed. The minimum inference speed is the guar-
anteed speed achievable regardless of the statistics of the
activation and parameter data. The maximum inference
speed is that can be achieved with the data-dependent
speed-up technique (e.g., activation pruning in ROSETTA,
delta thresholding in [12], and model pruning in [9], delta
thresholding and model pruning in [31]), which may not
be theoretically guaranteed under certain constraints on the
inference performance but proven practically for a few of
the specific inference tasks.

ROSETTA exhibits a high resource and energy efficiency.
Compared to the results of our previous work [17], the
resource and energy efficiency are higher by up to 206.1%
and 304.0%, respectively. They are also significantly higher
than the efficiency of the other previous processors listed in
the table, particularly in the guaranteed minimum results.
This has been contributed by the efficient microarchitecture
designed based on the homogeneous PUs with a high
utilization rate as well as the reduced data size, which
decreases not only the resource usage but also power con-
sumption. Some of the previous ones show high efficiency
in the peak results. However, they rely on the architecture-
specific training methodologies [9], [12], [31] to boost the
efficiency. The processors presented in [9], [31] are based on
the model pruning techniques to sparsify the models, which
are quite different from the activation pruning in ROSETTA.
If the model pruning be performed in a structured way
as presented in [34] to reduce the model size, ROSETTA
might be also benefited from the reduced model to achieve
a higher efficiency. Furthermore, some of the previous pro-
cessors shows absolutely high resource usages, which might
not be fit in low-cost resource-limited devices such as what
ROSETTA has been implemented in.

5 DISCUSSIONS WITH RELATED WORK

ROSETTA is based on the instruction set supporting multi-
ple data formats and activation pruning to perform RNN
inference efficiently. There are a few of previous RNN
inference processors based on the similar approaches. This

section presents the related work briefly and discusses the
novelty of ROSETTA in contrast.

The previous studies in [18], [35], [36], [37] presented
RNN inference processors based on the instruction sets.
One of them [36] was designed to support fixed-point data
formats without programmability, which might be failing in
realizing various dataflows of different data distributions
with high resource efficiency; the others were designed
to support floating-point data formats [18], [35], [37], in-
evitably involving a high resource usage. The performance-
scalable architecture presented in [38], [39], [40] provides
the flexibility of the data width in design time but not
the programmability in runtime. ROSETTA has been de-
signed based on the instruction set supporting multiple
data formats and activation pruning with programmability.
Designed based on the complex-instruction-set-computer
principle, various dataflows involved in practical RNN in-
ference can be described conveniently with only a few of
instructions. This has been successfully demonstrated for
several RNN models of different types targeting practical
tasks in Section 4.2.

Several previous studies [7], [8], [9], [41] presented the
model pruning techniques that exploit the sparsity in the
parameters induced by special training methodologies to
achieve efficient inference. The inference processor was
designed to achieve high efficiency by pruning the model
with the consideration of the architecture [7]. The pre-
vious studies presented in [42], [43], [44] are based on
the activation pruning, which seems similar to that of
ROSETTA. However, in ROSETTA, the activation pruning
is programmable in the fine-grained manner differently for
each vector operand, so as to achieve a moderate inference
performance even with a non-zero pruning, in contrast to
the other previous ones that do not support such pro-
grammability regarding non-zero pruning. Similarity-based
input-skipping RNN inference processors are presented
in [12], [15], [31], [42], where the computation overhead is
inevitable because the difference between the current input
and the input of the previous timestep needs to be computed
for each timestep.

There are our previous studies [17], [26] that directly pre-
cede this study. In the study presented in [17], we designed
an instruction-set architecture by deriving the common
primitive vector operations, which the inference dataflows
of the RNN models are composed of, intending to sup-
port various models for inference. In addition, we devised
a multiplication-approximation scheme and a hardware-
sharing technique to implement a resource-efficient pro-
cessor. Motivated by observing the data distributions in
practical inference tasks, we presented an RNN inference
processor supporting multiple data formats in [26], which is
the preliminary work of ROSETTA.

We have completely re-designed the instruction-set
architecture as well as microarchitecture, for ROSETTA
to achieve a higher resource and energy efficiency. The
instruction-set architecture has been re-designed to provide
the programmability regarding the multiple data formats†

†Our previous work presented in [17] supports only a single format
(S4.12); whereas ROSETTA supports multiple data formats (S1.7, S3.5,
and U0.8) of a smaller size.
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and activation pruning. In addition, the instruction-set ar-
chitecture has been simplified significantly by removing
pointer handling operations, so as to reduce the code size
for a smaller IM. The microarchitecture has been re-designed
based on homogeneous PUs, that are efficiently utilized for
every vector operation, supporting the multiple data for-
mats and activation pruning. VPU in our previous work [17]
was designed to perform not only EMAC but also the inner-
product operation; however, VPU in ROSETTA has been
designed to perform the EMAC operation only, based on
which every vector operation is performed with a higher
resource efficiency. As a result, compared to our previous
work, ROSETTA achieves such improvements in terms of
the resource and energy efficiency that have been shown in
the previous section.

6 CONCLUSION

This paper presents an efficient RNN inference processor,
named ROSETTA. ROSETTA is an instruction-set proces-
sor that supports per-vector programmable multiple data
formats, for attaining a wide range or high precision with
a limited data size. ROSETTA consistenly performs every
vector operation on the basis of the EMAC operation by
fully utilizing the PUs to achieve high resource efficiency.
ROSETTA prunes the activation elements in a fine-grained
manner. The operations and memory accesses related to
the pruned elements are skipped and reduced, respec-
tively, to achieve high energy efficiency. A fully-integrated
RNN inference system is developed in a low-cost 28 nm
FPGA, under which the functionality of ROSETTA has
been verified for practical inference tasks based on four
different RNN models of different types. The resource and
energy efficiency of ROSETTA are 1.14 MOP/s/LUT and
113.29 GOP/s/W, respectively, at the guaranteed minimum.
Furthermore, it has been proven in practice that they can be
effectively improved to be as high as 2.51 MOP/s/LUT and
434.01 GOP/s/W, respectively.

Although ROSETTA successfully achieves a high re-
source and energy efficiency, it has some limitations. First,
only activation pruning is considered by ROSETTA even
though many of the parameters have such small magnitudes
that they can be pruned to achieve a higher efficiency [7],
[8], [9], [41]. Second, some RNN models that emerged from
very recent studies of the neural networks [45] may not
be supported efficiently as they rely on the complicated
dataflows quite different from those of the conventional
models. Further studies may improve ROSETTA by consid-
ering such limitations stated above.
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