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Abstract: This study presents A resource-efficient rEconfigurable inference processor for Recurrent1

neural netwOrks (RNN), named AERO. AERO is programmable to perform the inference of the2

RNN models of various types. It is designed based on the instruction-set architecture specializing3

in processing the primitive vector operations composing the dataflows of the RNN models. A4

versatile vector-processing unit (VPU) is incorporated to perform every vector operation achieving5

a high resource efficiency. Aiming at a low resource usage, the multiplication in VPU is carried6

out on the basis of an approximation scheme. In addition, the activation functions are realized7

with the reduced tables. A prototype inference system is developed based on AERO using a8

resource-limited FPGA, under which the functionality of AERO is verified elaborately for the9

inference tasks based on several RNN models of different types. The resource efficiency of AERO10

is as high as 1.28 MOP/s/LUT, which is 1.3 times higher than the previous state-of-the-art result.11

Keywords: accelerator architectures; field programmable gate arrays; microarchitecture; neural12

network hardware; recurrent neural networks13

1. Introduction14

Recurrent neural networks (RNN) are a class of artificial neural networks whose15

dataflows have feedback connections. Such recurrent dataflows enable the inference to16

be performed in a stateful manner that is based on not only the current but also past17

inputs, thereby recognizing the temporal characteristics [1]. Because of this feature, the18

RNN inference is employed in diverse applications that require handling of sequential19

or time-series data, such as in language modeling [2], sequence classification [3], and20

handwriting recognition [4]. However, the computational workload involved in the21

RNN inference is intractably high for the practical models. Hence, a dedicated hardware22

to accelerate the inference process is necessary, and its efficiency is of importance when23

implemented using resource-limited FPGAs.24

There are several previous studies regarding the design and implementation of25

efficient RNN inference processors using FPGAs. Most of the previous RNN inference26

processors were designed to support only one type of the models: some of them can27

perform the RNN inference based only on the long short-term memory (LSTM) [5] as28

LSTM is generally beneficial to achieve a good inference performance in particular for29

the tasks relying on the long-term dependencies [6–11]; others employed the gated-30

recurrent unit (GRU) [12] to achieve more efficient architectures [13,14]; an efficient31

processor to accelerate the training of the vanilla-RNN-based language model was32

presented in [15]. An FFT-based compression technique for the RNN models and a33

systematic design framework based on this technique were proposed in [10,16]. A GRU34

inference system was developed by integrating dedicated matrix compute units [13]. An35

efficient architecture to perform the GRU inference is presented based on the modified36

model exploiting the temporal sparsity [17]. A reconfigurable system presented in [18]37
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was designed to perform the inference based on LSTM as well as convolutional neural38

networks. As the multiplications are compute-intensive kernels involved in the RNN39

inference, a previous work tried to approximate them based on the technique motivated40

by the stochastic computing [7].41

This study presents an efficient RNN inference processor named AERO. AERO is an42

instruction-set processor that can be programmed to perform the RNN inference based43

on the models of various types, where its instruction-set architecture (ISA) is formulated44

to efficiently perform the common primitive vector operations composing the dataflows45

of the models. AERO is designed by incorporating a versatile vector-processing unit46

(VPU) and utilizing it to perform every vector operation consistently, achieving a high47

resource efficiency. To reduce the resource usage, the multiplications are carried out48

approximately without affecting the inference results noticeably, and the number of the49

tables in the activation coefficient unit (ACU) is reduced by exploiting the mathematical50

relation between the activation functions. The functionality of AERO is verified for51

the inference tasks based on several different RNN models under a fully integrated52

prototype inference system developed using Intel® Cyclone®-V FPGA. The resource53

usage to implement AERO is 18K LUTs and the inference speed is 23 GOP/s, showing54

the resource efficiency of 1.28 MOP/s/LUT.55

The rest of the paper is organized as follows. Section 2 analyzes the dataflows of56

the RNN models of various types. Section 3 describes the ISA and microarchitecture57

of AERO in detail. Section 4 presents the implementation results and provides the58

evaluation in comparison to the previous results. Section 5 draws the conclusion.59

2. Dataflow of RNN Inference60

The RNN models have the recurrent dataflows formed by the feedback connections61

such that the inference can be performed based on the states affected by the past input ef-62

fectively. Figure 1 illustrates the dataflow of the traditional vanilla RNN model [19] along63

with those of the advanced variants [5,12]. The elementwise multiplication of the vectors64

a and b is represented by a.× b. Each model contains one or more fully-connected65

layers followed by non-linear activation functions, which regulate the propagation of the66

information from the current input and state to the next state. Although the dataflows of67

the models are dissimilar to each other, they can be described by a few common primitive68

vector operations such as matrix-vector multiply-accumulate (MAC), elementwise MAC,69

and activation functions.70

The RNN models are different from each other with respect to the computational71

workload and achievable inference performance. Table 1 illustrates the workload and72

inference performance of the three RNN models of different types designed targeting73

the sequential MNIST tasks [20] through different steps. In the sequential MNIST tasks,74

an image is segmented by the number of the steps and each segment is inputted to the75

models for each step as described in [20].1 In estimating the workload, the addition and76

multiplication have been counted by one OP and two OPs, respectively.77

The trade-off in between the workload and inference performance can be found in78

Table 1. Since there is no singular model type which always outperforms others in terms79

of both workload and performance, the model design, including the selection of its type,80

needs to be carefully done subject to the application-specific objectives and constraints.81

For example, LSTM is more favorable to achieve a superior inference performance than82

the vanilla RNN or GRU. However, the vanilla RNN or GRU might be efficient owing83

to the low workload when applied to some tasks that do not rely on the long-term84

dependencies (e.g., the sequential MNIST task through 16 steps in Table 1). This is the85

motivation for AERO to support the reconfigurability for the models of various types.86

3. Proposed Processor: AERO87

1 The images in the original dataset have been resized to 32× 32 for the purpose of the convenient segmentation.
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Figure 1. Dataflow graphs of the RNN models, where x, h, and c represent the input activation, hidden state, and cell state
vectors, respectively, W and b represent the weight matrix and bias, respectively. The subscripts are used to distinguish the
gates.

Table 1. Workload and achievable accuracy of the RNN models for the sequential
MNIST tasks, where the state size of the models is 128.

Number of steps RNN model type Workload (KOP/step) Accuracy (%)

16
Vanilla RNN 73 98.11

GRU 222 98.83

LSTM 296 98.86

32
Vanilla RNN 70 97.14

GRU 218 98.80

LSTM 292 98.84

64
Vanilla RNN 66 73.98

GRU 210 98.19

LSTM 288 98.47

3.1. RNN-Specific Instruction-Set Architecture88

The ISA of AERO is formulated with the objective of efficiently performing primitive89

vector operations that compose the dataflows of the RNN models. The ISA defines a90

special data type known as the vector, which is the basic unit of the dataflow processing91

in AERO. Each vector is composed of P w-bit elements and stored in a memory. Several92

memories store the vectors, namely, activation memory (AM), weight memory (WM),93

and bias memory (BM), which are appropriately named to express their purposes and94

addressable by w bit. The instruction memory (IM) stores the program, which is an95
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instruction list to describe a certain dataflow. The ISA has sixteen pointer registers96

storing the addresses for the memory accesses, and their roles are summarized in Table97

2.98

Table 2. Pointer registers in AERO.

Register Alias Role

R0 DST Destination address in AM

R1 SRC0 First source address in AM

R2 SRC1 Second source address in AM

R3–R7 - Placeholders

R8 BIAS Bias address in BM

R9 WEIGHT Weight address in WM

R10 DST_BOUND Bound of the destination address

R11 SRC0_BOUND Bound of the first source address

R12–R15 - Placeholders

The ISA supports only a few kinds of instructions, some of which can be used for the99

vector processing while others for the pointer handling. Table 3 describes the behaviors100

of the supported instructions. The inner product of the two vectors a and b is represented101

by a ◦ b. The bitwise shift, or, and inversion operators are represented by�, |, and ~,102

respectively. SignExt(·) and ZeroExt(·) extend the signed and unsigned input operands,103

respectively. MVMA, EMAC, and ENOF belong to the vector-processing instructions104

and have such complex behaviors that realize the primitive vector operations composing105

the dataflows through several microoperations, as described in Table 3. Furthermore,106

they directly use the vector operands stored in the memories according to the register-107

indirect addressing. The ISA provides a simple programming model such that each108

vector-processing instruction corresponds directly to each primitive vector operation,109

reducing the instruction count involved to describe a dataflow. CSL, SHL, ACC, and110

SAC belong to the pointer-handling instructions. They provide the simple arithmetic and111

logical operations for efficiently handling the addresses stored in the pointer registers.112

3.2. Microarchitecture113

3.2.1. Processing pipeline114

AERO is designed based on the proposed RNN-specific ISA with P = 64 and115

w = 16. Figure 2 shows the processing pipeline, which is composed of seven stages. In116

Stage 1, an instruction is fetched from IM. In Stage 2, the control signals are generated117

by decoding the fetched instruction; the pointers are read for the subsequent memory118

accesses and possibly updated. In Stage 3, the vector operands are read from one or119

more memories by the addresses provided by the pointers; ACU finds the coefficients120

for evaluating the activation functions. In Stages 4–6, VPU processes the vector operands121

served from the preceding stage. In Stage 7, the resulting vector from VPU is written to122

the memory (AM). The processing throughput of AERO is basically one vector per cycle.123

If multiple vector operations are involved in a single vector-processing instruction, it124

may take multiple cycles to execute the instruction. For example, it takes (DST_BOUND -125

DST)·(SRC0_BOUND - SRC0)/64 cycles to execute a single MVMA instruction.126

AERO incorporates a versatile VPU to perform every kind of vector operation.127

As the dataflow analysis in Section 2 implies, the primitive vector operations that are128

necessarily supported by AERO are the matrix-vector multiplication, elementwise MAC,129

and activation functions. VPU either performs the elementwise MAC or computes130

inner product of the vectors. The matrix-vector multiplication is performed by VPU131

computing the inner products iteratively with the vectors. The activation functions132

are evaluated by employing a linear spline, for which the elementwise MAC is also133
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Table 3. Instructions in AERO.

Instruction Function Behavior Format

MVMA Matrix-vector MAC

base← SRC0

while DST < DST_BOUND do
bias← BM[BIAS]
while SRC0 < SRC0_BOUND do

in0← AM[SRC0]
in1←WM[WEIGHT]
AM[DST]← in0 ◦ in1 + bias
SRC0← SRC0+ P
WEIGHT← WEIGHT+ P

end while
BIAS← BIAS+ 1
DST← DST+ 1
SRC0← base

end while

14

000
6 3 0

0
45

Reserved

EMAC.acc.inv Elementwise MAC, where acc indi-
cates that the result is accumulated
and inv indicates the bitwise inver-
sion of the first operand.

while DST < DST_BOUND do
in0← inv ? ~ AM[SRC0] : AM[SRC0]
in1← AM[SRC1]
in2← acc ? AM[DST] : 0
AM[DST]← in0.× in1 + in2
DST← DST+ P
SRC0← SRC0+ P
SRC1← SRC1+ P

end while

inv

14

001
6 3 045

acc

Reserved

ENOF.type Elementwise non-linear function,
where type indicates the function
type.

while DST < DST_BOUND do
AM[DST]← function values of AM[SRC0]
DST← DST+ P
SRC0← SRC0+ P

end while

14

010
6 3 0

1 0
45

type
Reserved

CSL Ra, imm8 Constant load, where a ∈
{0, 1, · · · 15} and imm8 is given
by the 8-bit immediate constant.

Ra← ZeroExt(imm8)
a

14

imm8 100
11 10 3 2 0

SHL Ra, imm8 Shift and load, where a ∈
{0, 1, · · · 15} and imm8 is given
by the 8-bit immediate constant.

Ra← (Ra� 8)|ZeroExt(imm8)
a

14

imm8 101
11 10 3 2 0

ACC Ra, Rb, imm4 Accumulate, where a, b ∈
{0, 1, · · · 15} and imm4 is given
by the 4-bit immediate constant.

Ra← Rb + SignExt(imm4)
a

14

b imm4 110
11 10 7 6 3 2 0

SAC Ra, Rb, imm4 Shift and accumulate, where a, b ∈
{0, 1, · · · 15} and imm4 is given by
the 4-bit immediate constant.

Ra← Rb + (SignExt(imm4)� log2P)
a

14

b imm4 111
11 10 7 6 3 2 0

performed by VPU. By utilizing the VPU in this manner to efficiently perform every134

kind of vector operation, AERO may achieve a high resource efficiency. In contrast,135

many of the previous RNN inference processors including those presented in [6–8] were136

designed based on the architecture that incorporates multiple different processing units,137

each of which can perform a certain vector operation only. This might be inefficient in138

terms of the resource efficiency because some of the processing units sometimes may139

not perform any operations inevitably due to the data dependency imposed inherently140

by the dataflows.141

3.2.2. Vector processing unit based on the approximate multipliers142

VPU is designed to achieve a low resource usage. Figure 3 shows the microarchi-143

tecture of VPU, in which the two highlighted datapaths are the ones through which the144

vector operations (elementwise MAC and inner product computation) are performed.145
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Figure 3. Microarchitecture of the vector processing unit.

It is noteworthy that the microarchitecture is designed to allow the two paths to share146

several components, more specifically, the multipliers and adders in the first two stages,147

in order to reduce the resource usage. The summation unit in the third stage computes148

the sum of the 33 inputs based on the Wallace tree, whereby the accumulation involved149

in computing the inner product is carried out.150

Each multiplier in the first stage of VPU carries out the multiplication of the 16-bit151

two’s complement operands on the basis of an approximation scheme. A 16-bit two’s152

complement operand, which is denoted by x, can be truncated to x[7 : 0] without any loss153
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Figure 4. Distributions of the multiplier operands in the RNN inference for the sequential MNIST task through 16 steps
based on (a) GRU, (b) LSTM, (c) peephole LSTM [21], and (d) bidirectional LSTM models [22], whose state sizes are 64, 96,
64, and 64, respectively.

Table 4. Multiplication approximation scheme.

Case a Product Example

x is truncatable. x[7 : 0]× y[15 : 0]
x = 0xFF80, y = 0xABCD

→ xy = 0x80 × 0xABCD

x is not truncatable and y is truncatable. x[15 : 0]× y[7 : 0]
x = 0x1234, y = 0x007D

→ xy = 0x1234 × 0x7D

Neither x nor y is truncatable and x[7] is on. x[15 : 0]× y[15 : 8]� 8
x = 0x12F4, y = 0x0BCD

→ xy ≈ 0x12F4 × 0x0B� 8

Neither x nor y is truncatable and x[7] is off. x[15 : 8]× y[15 : 0]� 8
x = 0xAB12, y = 0xABCD

→ xy ≈ 0xAB × 0xABCD� 8

a A 16-bit two’s complement number p[15 : 0] is truncatable to p[7 : 0] if p[15 : 7] has the pattern of all
zeros or ones.

if x[15 : 7] has the pattern of all zeros or ones. Here, x[i : j] stands for the sub bit-vector154

of x ranging from the i-th to the j-th bit. Exploiting such truncatability, the proposed155

scheme carries out the 16-bit × 8-bit exact multiplication to obtain the approximate156

result of the 16-bit × 16-bit multiplication, as described in Table 4, and the multiplier157

design based on the proposed scheme is shown in Figure 3. The prefix 0x of the number158

literals stands for the hexadecimal representation. The proposed scheme reduces the159

resource usage considerably because it entails only half number of the partial products160

compared to that for the exact multiplication, considering that the number of the partial161

products of a-bit × b-bit is in O(ab).162

The proposed approximation scheme does not affect the inference results noticeably.163

The cases that make an operand truncatable in the proposed scheme corresponds that164

the operands have the values near zero since the operand is represented by the two’s165

complement format. These cases are probable in practice. Figure 4 illustrates the practical166
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operand distributions aggregated while performing the RNN inference for the sequential167

MNIST task, in which we can find that most of the operands have the values near zero.168

The probability of the first two cases in Table 4, for which no approximation error will169

be brought about by producing the exact multiplication results, is at least 0.49 in every170

model used to obtain the results in Figure 4. This is much higher than the probability171

calculated assuming the uniform distribution, 1− (1− 2 · (1/2)9) · (1− 2 · (1/2)9) ≈172

0.008. In other cases, the multiplication is performed in a way not to take account the173

partial products related with the insignificant bits of the operands, as described in Table174

4, and the inference results are not thus affected significantly. In the sequential MNIST175

task to obtain the results in Figure 4, the accuracy loss caused by the approximation is176

below 0.7%.177

Followed some additional remarks that are worth noting:178

• The truncation is performed by dropping the upper eight bits of an operand in the179

proposed multiplication approximation scheme. It is notable that the truncation180

is performed in a consistent manner without regard to the RNN models and thus181

can be fulfilled by a simple logic circuitry picking the sub bit-vector at the fixed182

position as shown in Figure 3.183

• A different truncation size might be considered in applying the proposed multi-184

plication approximation scheme. When the truncation size is τ, 16-bit × 16-bit185

multiplication is carried out by the 16-bit × (16− τ)-bit multiplier by dropping186

out the upper τ bits in one of the multiplication operands. With a larger τ, the187

multiplier becomes simpler so that its resource usage can become less. However,188

this may affect the inference results more severely because the probability that both189

of the two operands are not truncatable, which correspond to the last two cases in190

Table 4 brining about about approximation errors, may become larger. τ has been191

determined to 8 so that the proposed multiplication approximation scheme does192

not noticeable effect on the inference results, which have been validated elaborately193

based on the experimental results.194

• The proposed scheme exploits the truncatability of the multiplication operands,195

which is highly probable in the inference based on the RNN models (e.g. vanilla196

RNN, GRU, LSTM) that are already trained. Therefore, it does not entail any training197

issues necessarily addressed by a special methodology such as the retraining [6]. It198

does not require any model modifications, either.199

3.2.3. Activation coefficient unit based on the reduced tables200

The non-linear activation functions are evaluated by employing a linear spline. The
sigmoid function of x, which is denoted by σg(x) , 1/(1 + e−x), is evaluated by

α(x) · (x− κ(x)) + β(x), (1)

where κ(x) represents the knot which is the left end of the segment belonging to x and201

α(x) and β(x) represent the coefficients corresponding to the slope and offset of the202

segment, respectively. x is represented by a 16-bit two’s complement number and κ(x)203

is determined as x[15 : 12], so that x− κ(x) is simplified to x[11 : 0]. ACU finds α(x)204

and β(x) by looking up the tables storing the pre-computed slopes and offsets with the205

index given by κ(x) for the subsequent MAC operation to be performed by VPU.206

Another activation function, hyperbolic tangent function, has to be supported addi-207

tionally in order to process the dataflows of the models of various types. Furthermore,208

such a coefficient lookup is executed for every element composing a vector in parallel;209

for this purpose, there need as many tables as the number of the elements in a vector.210

Therefore, the resource usage involved to implement ACU is not negligibly small.211

ACU is designed to have no additional tables storing the coefficients for the hyper-
bolic tangent function; it finds the coefficients for the hyperbolic function by modifying
those for the sigmoid function based on the mathematical relation between the functions.
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Figure 5. Microarchitecture of the activation coefficient unit.

Let us denote the hyperbolic tangent function of x by σt(x) , (e2x − 1)/(e2x + 1). Since
σt(x) is equal to 2σg(2x)− 1, it can be evaluated using (1) by

2α(2x) · (2x− κ(2x)) + 2β(2x)− 1. (2)

Here, α(2x) and β(2x) can be obtained by looking up the tables for the sigmoid function
with the index determined considering the saturation as follows:

0b1000 for x[15] = 0b1,
0b0111 for x[15 : 14] = 0b01,
x[14 : 11] for other cases,

(3)

where the prefix 0b of the number literals stands for the binary representation. Figure212

5 shows the microarchitecture of ACU. It should be remarked that 2β(2x)− 1, which213

is the offset in evaluating σt(x), is realized by the simple logical operation as shown in214

Figure 5 since 0 ≤ β(2x) < 1. When compared with the straightforward architectures215

including those presented in [6–10,16,17,23], which were designed without exploiting216

such mathematical relation between the functions, the number of the tables for the217

proposed scheme can be reduced by as much as half due to its shared usage of the tables.218

This leads to the reduction of the logic resource usage for ACU by 29% in terms of the219

LUT count in ACU implementation results.220

3.3. Prototype inference system221

A prototype RNN inference system is developed to verify the functionality of AERO222

using an FPGA. Figure 6 describes the overall architecture of the inference system into223

which all the essential components including the MCU are integrated. The memories224

that are associated directly with AERO, i.e. AM, WM, BM, and IM, are designed by225

instantiating BRAMs. The bandwidths provided by WM and AM required to avoid226

stalling the pipeline of AERO are 64×16 bits/cycle and 64×16×4 bits/cycle, respectively.227

To realize such high bandwidths, WM and AM have been built based on the multi-bank228

structures of the BRAM instances; specifically, AM has been designed by incorporating229

the access router that is capable of routing the data transfers dynamically from/to the230

internal dual-port BRAM instances organized based on the multi-bank structure.231

The inference procedure is actualized using the components in the system according232

as illustrated in Figure 7. MCU preloads the dataflow description program, which has233
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Figure 6. Overall architecture of the prototype inference system.

N

Time

1

1 2

N – 1 

MCU

AERO 2

3

Parallel IO / VGA

Start N

n

n

Loading parameters/program into WM, BM, and IM in AERO.

Loading features into AM in AERO for the n-th step.

Inference processing by AERO for the n-th step.

Controlling or miscellaneous processing.

Displaying the inference result.

Figure 7. Overall inference procedure for N steps in the prototype inference system.

been created based on the ISA of AERO, into IM, the weight matrices and bias vectors234

into WM and BM, respectively. MCU and AERO run in a lock-step manner for each step235

as illustrated in the figure; MCU feeds the input activation vector to AERO by loading it236

to AM, and AERO runs the inference. They can work in parallel since the part of AM that237

stores the input activation vector is designed to support the double-buffering scheme.238

Finally, the inference results are demonstrated via the parallel IO and VGA subsystem.239

4. Results and Evaluation240

The prototype RNN inference system based on AERO has been synthesized by241

using Intel® Quartus® Prime v20.1 targeting Intel® Cyclone®-V FPGA (5CSXFC6D6).242

The entire system has been successfully fitted in such a resource-limited FPGA device,243

utilizing the resource usage of 27K LUTs, 2653Kbit BRAMs, and 68 DSPs. The resource244

usage of AERO is just 18K LUTs, 1620Kbit BRAMs, and 64 DSPs, where the BRAMs have245

been used to implement AM, WM, BM, and IM. Here, the LUT count has been estimated246

to be the ALUT [24] count in the target device, according as suggested by the guideline247
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Table 5. Performance of AERO for the various RNN models targeting the sequential MNIST tasks [20].

RNN model type Vanilla RNN GRU LSTM GRU LSTM
Bi-directional

LSTM [22]

Peephole

LSTM [21]

Bi-directional

LSTM [22]

Number of steps 16 16 16 32 32 32 64 64

State size 128 128 128 96 96 96 128 128

Workload (KOP/step) 73.73 222.34 295.81 111.46 148.13 296.26 172.93 444.16

Processing latency

(µs/step)
3.24 9.70 12.93 4.88 6.50 13.00 7.60 19.47

Inference accuracy (%) 97.32 97.91 98.47 97.36 97.59 98.00 97.88 97.94

Normalized resource usage

(LUT/step/s)
0.06 0.17 0.23 0.09 0.12 0.23 0.14 0.35

Normalized energy consumption

(µJ/step)
0.45 1.34 1.79 0.67 0.90 1.80 1.05 2.69

Figure 8. Verification environment setup for the sequential MNIST tasks.

in [25]. The maximum operating frequency of the system is estimated to be 120 MHz248

under the slow model with a 1.1 V supply at 85◦C, at which the peak inference speed is249

as high as 23 GOP/s and the average power consumption is 138.3 mW.250

The functionality of AERO has been verified successfully by programming it to251

perform the inference tasks based on the various RNN models listed in Tables 5 and 6 for252

the sequential MNIST tasks through different steps [20] and word-level Penn Treebank253

task [26]. The inference performance (i.e. the inference accuracy in the sequential MNIST254

task and the perplexity in the Penn Treebank task) has been obtained for the fixed-point255

models associated with the proposed multiplication approximation (in Section 3.2.2) and256

table reduction schemes (in Section 3.2.3). The verification environment setup is shown257

in Figure 8.2258

AERO exhibits the scalability in the normalized resource usage as well as normal-259

ized energy consumption to achieve a certain inference performance, providing the260

reconfigurability. In Tables 5 and 6, the normalized resource usage has been estimated261

2 The demonstration video is accessible via https://youtu.be/nmy8K1bRgII.

https://youtu.be/nmy8K1bRgII
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Table 6. Performance of AERO for the various RNN models targeting the word-level Penn
Treebank task [26].

RNN model type LSTM Bidirectional GRU [22] GRU

State size 64 64 128

Workload (KOP/step) 98.75 148.61 222.34

Processing latency (µs/step) 4.33 6.50 9.70

Perplexity per word 120.86 116.9 108.94

Norm. resource usage (LUT/step/s) 0.08 0.12 0.17

Norm. energy consumption (µJ/step) 0.60 0.90 1.34

by the usage of the logic resource to achieve the unit inference speed. The normalized262

energy consumption has been estimated by the energy consumed per each step in the in-263

ference. These metrics are directly related with the latency taken to process the workload264

of the models. AERO can achieve a superior inference performance by being configured265

to run the inference based on a complex model; or else, can become more efficient in the266

resource usage and energy consumption by being configured to run the inference based267

on a simple model.268

The implementation results of AERO are compared with the previous results in269

Table 7. The previous state-of-the-art RNN inference processors implemented using270

FPGA devices have been selected for the fair comparisons. Here, the resource efficiency271

is defined so that the comparisons can be conducted in such a model-neutral way as272

in the previous study [27]. AERO shows a relatively low resource usage as against273

the other previous processors. However, its inference speed is not that low, leading274

to a high resource efficiency. Some previous RNN inference processors [6,10,11,17]275

show very high inference speed effectively by exploiting the model sparsity; however,276

such a high inference speed is not guaranteed theoretically subject to meet a certain277

degree of the inference performance even with a special retraining process. The resource278

efficiency of AERO is 1.3 times higher than the previous best result. This is contributed279

by its microarchitecture utilizes the VPU in an efficient manner to perform every vector280

operation; furthermore, its major building blocks, VPU and ACU, have been designed281

based on the novel schemes to reduce the resource usage. More importantly, AERO282

supports the reconfigurability to perform the inference based on the RNN models of283

various types, and this is verified elaborately under the prototype system developed284

to perform the practical inference tasks. To the best of our knowledge, AERO is the285

first RNN inference processor that has been proven to provide the reconfigurability286

supporting various model types. The energy efficiency of AERO is higher than the287

previous results in the table. This may be owed to the low-power characteristic of the288

cost-effective FPGA device used in this work; however, it should be noted that such289

FPGA device usually has a tight limitation of the available resource, to which AERO has290

been successfully fitted and shows a high inference speed.291

Even though AERO has been implemented based on the single processing core292

based on the architecture presented in the previous section, it may achieve a higher293

inference speed while maintaining the resource efficiency with more processing cores294

integrated. The primitive vector operations in the RNN models of various types (i.e.295

matrix-vector MAC, elementwise MAC, and elementwise activation) can be decomposed296

into multiple vector operations of a smaller size. If the decomposed operations are297

performed in parallel by multiple processing cores which share a dataflow description298

program, the inference speed can be increased by a factor of the number of the processing299

cores. It is notable that such parallel processing by multiple cores does not entail any300

aggregation overhead so that the resource efficiency can be maintained. Further studies301

may be followed to achieve a high inference speed by materializing such architecture.302
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5. Conclusion303

This study has presented the design and implementation of a resource-efficient304

reconfigurable RNN inference processor. The proposed processor, named AERO, is an305

instruction-set processor whose ISA has been designed to process the common primitive306

vector operations in the dataflows of the RNN models of various types, achieving the307

programmability for them. AERO utilizes the versatile VPU to perform every vector308

operation efficiently. To reduce the resource usage, the multipliers in VPU have been309

designed to perform the approximate computations and the number of the tables in310

ACU has been reduced by exploiting the mathematical relation between the activation311

functions. The functionality of AERO has been successfully verified for the inference312

tasks based on several different RNN models under a prototype system developed313

using a resource-limited FPGA. The resource efficiency of AERO is as high as 1.28314

MOP/s/LUT.315
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